

DPP - 3 (Work, Energy \& Power)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/38

Video Solution on YouTube:-

https://youtu.be/KIW9Z7Bo19U

Written Solution on Website:-

Q 1. If a body of mass 200 g falls from a height 200 m and its total P.E. is converted into K.E. at the point of contact of the body with earth surface, then what is the decrease in P.E. of the body at the contact ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) 200 J
(b) 400 J
(c) 600 J
(d) 900 J

Q 2. On a rough horizontal surface, a body of mass 2 kg is given a velocity of $10 \mathrm{~m} / \mathrm{s}$. If the coefficient of friction is 0.2 and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, the body will stop after covering a distance of
(a) 10 m
(b) 25 m
(c) 50 m
(d) 250 m

Q 3. The decrease in the potential energy of a ball of mass 20 kg which falls from a height of 50 cm is
(a) 968 J
(b) 98 J
(c) 1980 J
(d) None of these

Q 4. Ablock of mass m initially at rest is dropped from a height h on to a spring of force constant k . The maximum compression in the spring is x then

(a) $m g h=\frac{1}{2} k x^{2}$
(b) $m g(h+x)=\frac{1}{2} k x^{2}$
(c) $m g h=\frac{1}{2} k(x+h)^{2}$
(d) $m g(h+x)=\frac{1}{2} k(x+h)^{2}$

Q 5. The kinetic energy of a body of mass 2 kg and momentum of 2 Ns is
(a) 1 J
(b) 2 J
(c) 3 J
(d) 4 J

Q 6. Calculate the increase in potential energy as a block of 2 kg is lifted through $2 \mathrm{~m}(g=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) 10 J
(b) 20 J
(c) 40 J
(d) 80 J

Q 7. A force shown in the F-x graph is applied to a 2 kg block horizontal as shown in figure. The change in kinetic energy is

(a) 15 J
(b) 20 J
(c) 25 J
(d) 30 J

Q 8. Two bodies of masses 2 m and m have their K.E. in the ratio $8: 1$, then their ratio of momenta is
(a) $1: 1$
(b) $2: 1$
(c) 4 :
(d) $8: 1$

Q 9. A 4 kg mass and a 1 kg mass are moving with equal kinetic energies. The ratio of the magnitudes of their linear momenta is
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) $4: 1$

Q 10. If the momentum of a body decreases by 30%, then kinetic energy decreases by
(a) 60%
(b) 51%
(c) 69%
(d) 90%

Q 11. Find the horizontal velocity of the particle when it reach the point Q . Assume the block to be frictionless. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $5 \mathrm{~m} / \mathrm{s}$
(c) $3.13 \mathrm{~m} / \mathrm{s}$
(d) $3.6 \mathrm{~m} / \mathrm{s}$

Q 12. A block is released from rest from top of a rough curved track as shown in figure. It comes to rest at some point on the horizontal part. If its mass is 200 gm , calculate work by friction in joules

(a) +2 J
(b) -2 J
(c) +4 J
(d) -4 J

Q 13. A block is released at A and slides on smooth surface in shape of quarter circle. The horizontal part is rough if the block comes to rest 1.0 m away from B , then what is the coefficient of kinetic friction?

(a) 1
(b) 2
(c) 3
(d) 4

Q 14. Work done by the conservative force on a system is equal to:
(a) the change in kinetic energy of system
(b) negatiye of the change in potential energy of system
(c) the change in total mechanical energy of system
(d) None of the above

Q 15. The potential energy of a particle under a conservative force is given by $U(x)=$ $\left(x^{2}-3 x\right) \mathrm{J}$ The position of $\mathrm{F}=0$ is at
(a) 1.5 m
(b) 2 m
(c) 2.5 m
(d) 3 m

Answer Key

Q.1 b	Q.2 b	Q.3 b	Q. 4 b	Q.5 a
Q.6 c	Q.7 b	Q.8 c	Q.9 c	Q.10 b
Q.11 c	Q.12 d	Q.13 b	Q.14 b	Q.15 a

Physics DPP

DPP-3 WEP: Conservative \& Non Conservative Forces, Potential Energy, Law of Conservation of Energy
By Physicsaholics Team

Solution: 1
decrease in P.E.

$$
\begin{aligned}
& =m g h=\left(\frac{200}{1000}\right) \times 10 \times 200 \\
& =400 \mathrm{~J}
\end{aligned}
$$

Solution: 2

$$
\begin{array}{ll}
& W_{a s l}=\Delta K \\
\Rightarrow & W_{N}+W_{m y}+W_{f r}=K_{f}-K_{i} \\
\Rightarrow & 0+0-\mu m g x=0-\frac{1}{2} m v^{2} \\
\frac{1}{2} \mu v^{2}=\mu m g x \\
x=\frac{v^{2}}{24 y g} \frac{2(0.2)}{2(0.2) \times 10} \\
x=25 \mathrm{~m}
\end{array}
$$

Ans. b

Solution: 3

$$
\begin{aligned}
\text { decrease in P.E. } & =m g h \\
& =20 \times 9.8 \times \frac{50}{100} \\
& =98 \mathrm{~J}
\end{aligned}
$$

Ans. b

Solution: 4 by Conservation of machenical energy \rightarrow loss in gravitational P.E. = gain in spring P.E.

$$
\Rightarrow \quad m g(h+x)=\frac{1}{2} k x^{2}
$$

Ans. b

$$
\begin{aligned}
& t=0 \square_{t u=0} \\
& h
\end{aligned}
$$

Solution: 5

$$
\begin{aligned}
& k E=\frac{p^{2}}{2 m} \\
& k E=\frac{(2)^{2}}{2(2)}
\end{aligned}
$$

$$
k E=1 \mathrm{~J}
$$

Ans. a

Solution: 6

$$
\begin{aligned}
& u_{f}-v_{i}=m g h \\
& \Delta U=2 \times 10 \times 2 \\
& \Delta U=40 \mathrm{~J} \text { Ans. }
\end{aligned}
$$

Ans. c

Solution: 7

$$
\omega=\Delta K E
$$

Soj

$$
\begin{aligned}
& \Delta K E=\omega=\text { Arem inder } \\
& \text { F-x curve } \\
& \triangle K E=\frac{1}{2} \times(10-2) \times 1(5) \\
& \triangle K E=\frac{1}{2} \times 8455 \\
& \Delta \sqrt{2 G}=20 \pi J \text { Ans }
\end{aligned}
$$

Ans. b

Solution: 8

$$
\begin{aligned}
& \frac{2 m}{1} \frac{m}{2} \\
& \frac{k E_{1}}{k E_{2}}=\frac{8}{1} \\
& \because K E=\frac{P^{2}}{2 m} \text { R mon } \Rightarrow \text { linear monentaim } \\
& \frac{K \epsilon_{1}}{K E_{2}}=\frac{p_{1}^{2} / 2 m m_{1}}{p_{2}^{2} / 2 m_{2}} \Rightarrow \frac{8}{1}=\frac{p_{1}^{2}}{P_{2}^{2}} \times \frac{m_{2}}{m_{1}}=\frac{p_{1}^{2}}{p_{2}^{2}} \times \frac{n \phi}{2 m n} \\
& \frac{p_{1}^{2}}{p_{2}^{2}}=\frac{16}{1} \Rightarrow \sqrt{\frac{b_{1}}{p_{2}}}=\frac{4}{1} \text { Ans. }
\end{aligned}
$$

Ans. c

Solution: 9

$$
\begin{aligned}
& k E=\frac{p^{2}}{2 m} \\
& p^{2}=(k E)(2 m) \\
& p^{2} \alpha m \text { (when pk } E=\text { constants } \\
& \therefore \frac{p_{1}^{2}}{P_{2}{ }^{2}}=\frac{4}{D} \Rightarrow \frac{p_{1}}{P_{2}}=\frac{2}{b}
\end{aligned}
$$

Solution: 10

$$
k \epsilon=\frac{p^{2}}{2^{m}}
$$

when; $p^{\prime}=p-\frac{30}{100} p=0.7 p$
$\Delta K E \%$ SNH. Ans.
Ans. b

Solution: 11
by Conservation of machenical energy
loss in P.E. = gain in K.E.

$$
\begin{gathered}
2 \times 10 \times(0.5)=\frac{1}{k} \times 2 \times v^{2} \\
v^{2}=10 \\
v=3.13 \mathrm{~m} / \mathrm{s} \text { shes. }
\end{gathered}
$$

Solution： 12

$$
W_{\text {all }}=\Delta K
$$

（ $\omega_{f}=\omega_{\text {ark }}$ done by friction）

$$
\begin{aligned}
& \Rightarrow \quad W_{N}+W_{m g}+W_{f_{r}}=k_{f}-k_{i} \\
& \Rightarrow \quad 0+m g h+W_{f_{r}}=0-0 \\
& \\
& w_{f_{r}}=-m g h \\
& w_{f_{r}}=-\left(200 \times 10^{-3}\right) \times 10 \times 2 \\
& w_{f_{r}}=-4 J
\end{aligned}
$$

Solution：
一匹号

Solution: 13

Consenvation of Enongy

$$
\begin{aligned}
& A \rightarrow C \\
& (K E+P E)_{A}+w_{f}=(K E+C E) \\
& 0+m g(2)-(\operatorname{umg})(Q)=0+0
\end{aligned}
$$

$$
\mu n \sin =\operatorname{mog}(2)
$$

$$
\mu=2
$$

Ans. b

Solution: 14 by definition of Potential energy \rightarrow
work done by conservative force is equal to the negative of the change in potential energy
$d \omega=-\Delta V$ Aug.

Ans. b

Solution: 15

$$
\begin{aligned}
& V=\left(x^{2}-3 x\right) J \\
& F=-\frac{\partial U}{\partial x}=-(2 x-3) \\
& F=-2 x+3 \\
& F \operatorname{For}=0
\end{aligned}
$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-
https://physicsaholics.com/home/courseDetails/38

Video Solution on YouTube:-

Written Solution on Website:-
https://youtu.be/KIW9Z7Bo19U
https://physicsaholics.com/note/notesDetalis/43

Chalo Nikis

